Blurred lines in conservation: Freshwater mussels gene flow and species boundaries

¹ Ecosystem Restoration through Interdisciplinary Exchange (ERIE) IGERT and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, 411 Cooke Hall, Buffalo, NY, 14260; isabelha@buffalo.edu ²Dept. of Geology, University at Buffalo, 411 Cooke Hall, Buffalo, NY, 14260; ³Buffalo State College, Great Lakes Center, 1300 Elmwood Ave., Buffalo, NY, 14222.

CONTEXT

- Correct identification of species, assessing the potential hybridization (i.e., gene flow between species) and description of hybrid zones is fundamental in developing and implementing measures to conserve and restore threaten taxa
- Unionids (native freshwater mussels) dispersed into the lower Great Lakes from the Ohio and Mississippi River Basins (Interior Basin) and the Atlantic slope after the last glaciation^{1,2}. Species range expansions led to secondary contact between closely related species such as *Lampsilis siliquoidea* (Interior Basin) and *L. radiata* (Atlantic slope). It has been suggested that the two species can hybridize^{3,4,5}, but the prevalence, direction and geographic extent oh hybrids is not well known
- The evidence for potential hybridization comes from the presence of morphological and genetic intermediate forms⁵ where these species' range overlaps, which has led to a long history of name confusion and debate on the phylogenetic relationship of the two species.
- *L. siliquoidea* is critically imperiled in the states of OK, imperiled in LA and TN, vulnerable in AR, MS and WV. L. radiata is critically imperiled in NC and RI, imperiled in SC, VA, NJ and PA. Both are considered secured in the remaining states where they occur

GOAL

 \circ Determine the phylogenetic relationship and levels of intermixing between *L*. *siliquoidea* and *L. radiata*.

1. LAMPSILIS SILIQUOIDEA AND L. RADIATA ARE DIFFERENT SPECIES

Fig. 1. L. siliquoidea and L. radiata samples (mantle clips or whole male individuals) were obtained from several locations outside the secondary contact zone and from within the secondary zone (blue).

Species identification outside the secondary zone (depicted in orange and green dots, Fig. 1) was initially based on morphological characters. Unionids have a distinct form of mitochondrial DNA (mtDNA) inheritance, termed doubly uniparental inheritance (DUI) where maternally (m) and paternally (p) inherited mtDNA can be observed and they are considered as independent genetic markers. Identifications were then corroborated using m-and p- inherited mitochondrial DNA (Cytochrome oxidase I, COI)⁶.

PORTO-HANNES I¹, LASKER HR^{1,2} and BURLAKOVA LE³

Haplotype networks (Fig. 2) were constructed in Network version 4.6 using the median-joining algorithm to determine the relationship between the two species outside the secondary contact zone. L. siliquoidea and L. radiata formed two discrete groups with unique haplotypes, which corroborates that these are two different species.

Some individuals from the secondary contact zone have morphological intermediate forms making classification difficult. Maternally inherited mtDNA haplotypes were used for identification by assigning individuals to either species.(Blue, Fig 2).

Fig 2. Networks showing the similarity of (a) 51 (343 sequences) maternally-inherited and (b) 14 (85 sequences) paternally-inherited cytochrome c oxidase subunit I (COI) haplotypes. Size of circle is proportional to haplotype frequency; L. siliquoidea (orange) and L. radiata (green) from outside the secondary contact zone, and from within the secondary contact zone (blue). Small grey lines perpendicular to main axis represent number of mutations between haplotypes, single mutations were not marked. M- and p- inherited haplotypes are not drawn to scale. Arrows identify haplotypes for individuals where there is a mismatch between m- and pinherited mtDNA suggesting hybridization. Location abbreviations as in Fig 3.

2. INCONGRUENCE BETWEEN m- AND p-INHERITED mtDNA HAPLOTYPES SUGGEST HYBRIDIZATION

Individuals with m-inherited haplotype assigned to one species and p-inherited haplotype assigned to the other species were found in two locations (SB=1 and MR=4, Fig. 2). Incongruence between m- and p-inherited mtDNA haplotypes suggests hybridization. However, incongruence between the two markers can also be caused by incomplete lineage sorting. Further testing is needed. In GR haplotypes of both species were found, but there was no evidence of hybridization.

Acknowledgements. I want to acknowledge David Zanatta (Central Michigan University), Todd Morris (Fisheries and Oceans Canada), Scott Reid (Ontario Ministry of Natural Resources Denise Mayer (NYS Museum), Bernard Sietman (Minnesota DNR), Chris Barnhart (Missouri State University), Arthur Bogan (NC Museum of natural sciences), Lee Harper (Riveredge Associates, LLC) and Alexander karatayev (Great Lakes Center) for providing tissue samples and/or field assistance. This material is based upon work supported by National Science Foundation Grant No. DGE-0654305 "Ecosystem Restoration through Interdisciplinary Exchange (ERIE) Traineeship Program", awarded to the University at Buffalo. U.S. Fish and Wildlife Service (US FWS) via the Great Lakes Fish and Wildlife Restoration Act (GLFWRA, project #30191-A-G152) "Conservation of Native Fresh Water Mussel Refuges in Great Lakes Coastal Wetlands" (PIs D. Zanatta, L. Burlakova et al.)

FURTHER TESTING USING MICROSATELLITES ALSO **SUPPORTS HYBRIDIZATION**

Fig. 4. Bayesian model-based analysis of 5 microsatellite loci with K = 2 distinct genetic clusters. Each vertical line represents one individual. Potential hybrids are represented as admixed individuals that are assigned to L *a* and to *L. radiata* clusters (bicolored lines). Y-axis represent *q*, coefficient of membership (0-1).

In order to further test the occurrence of hybridization, Bayesian model-based clustering based on 5 microsatellite loci⁷ was performed using Structure 2.3.3. No prior population/species information was used and individuals were assigned to one of the clusters. Hybrids were expected to be assigned jointly to clusters of L. siliquoidea and L. radiata (Fig. 4). This analysis suggests that hybridization may be happening at larger rates and in more locations (e.g. TC, JV, FH) than those suggested by the mtDNA analysis.

CONCLUSIONS AND FUTURE WORK

Graff (2002) Occas Pap Mollusks 6: 175-21

⁴Kat (1983) Molluscan Studies 49:133-

(1985) Evolution 39:1164-110

Ecosystem Restoration through Interdisciplinary Exchange

Fig. 3. Classified individuals using m- and p-inherited COI from within the secondary contact zone. Both haplotypes were found at three locations Ellicott Creek (EC), Tonawanda Creek (TC), Johnson Creek (JC), Moira River (MR), Pleasant Bay (PB), Sodus Bay (SB), Fair Haven State Park (FH), Black River Bay (BB), Grasse River (GR), Raquette River (RR), Lake Champlain (LC), Hudson River (HR) and Young Lake (YL)

• *Lampsilis siliquoidea* and *L. radiata* are different species.

• Mitochondrial and microsatellite data supports that hybridization has occurred.

However, mtDNA suggests that hybridization is not prevalent, whereas

microsatellite data is consistent with more frequent hybridization.

• Further testing is needed, particularly discerning whether or not incongruence between m- and p- inherited mtDNA could be due incomplete lineage sorting.

⁶Eackles and King TL (2002) Mol Ecol Notes 2:559-562

¹⁰Williams et al. (1993) Fisheries 18:6–22